Show that in a right-angled triangle, the hypotenuse is the longest side.
Triangles
1
Posts
2
Users
0
Likes
214
Views
0
12/07/2021 12:11 pm
Topic starter
Show that in a right-angled triangle, the hypotenuse is the longest side.
Answer
Add a comment
Add a comment
1 Answer
0
12/07/2021 12:15 pm
It is known that ABC is a triangle right angled at B.
We know that,
A + B + C = 180°
If B+C = 90° then A has to be 90°.
Since A is the largest angle of the triangle, the side opposite to it must be the largest.
So, AB is the hypotenuse which will be the largest side of the above right-angled triangle i.e. ΔABC.
Add a comment
Add a comment
Forum Jump:
Related Topics
-
Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
3 years ago
-
In Figure, PR > PQ and PS bisect QPR. Prove that PSR > PSQ.
3 years ago
-
AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Figure). Show that A > C and B > D.
3 years ago
-
In Figure, B < A and C < D. Show that AD < BC.
3 years ago
-
In Figure, sides AB and AC of ΔABC are extended to points P and Q respectively. Also, PBC < QCB. Show that AC > AB.
3 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 3 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed