In Figure, sides AB and AC of ΔABC are extended to points P and Q respectively. Also, PBC < QCB. Show that AC > AB.
Triangles
1
Posts
2
Users
0
Likes
503
Views
0
12/07/2021 12:17 pm
Topic starter
In Figure, sides AB and AC of ΔABC are extended to points P and Q respectively. Also, PBC < QCB. Show that AC > AB.
Answer
Add a comment
Add a comment
1 Answer
0
12/07/2021 12:18 pm
It is given that PBC < QCB
We know that ABC + PBC = 180°
So, ABC = 180° - PBC
ACB + QCB = 180°
Therefore ACB = 180° -QCB
Now, PBC < QCB,
∴ ABC > ACB
Hence, AC > AB as sides opposite to the larger angle is always larger.
Add a comment
Add a comment
Forum Jump:
Related Topics
-
Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
3 years ago
-
In Figure, PR > PQ and PS bisect QPR. Prove that PSR > PSQ.
3 years ago
-
AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Figure). Show that A > C and B > D.
3 years ago
-
In Figure, B < A and C < D. Show that AD < BC.
3 years ago
-
Show that in a right-angled triangle, the hypotenuse is the longest side.
3 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 1 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed