PQR is a triangle right angled at P and M is a point on QR such that PM ⊥ QR. Show that PM2 = QM × MR.
Triangles
1
Posts
2
Users
0
Likes
268
Views
0
04/06/2021 12:19 pm
Topic starter
PQR is a triangle right angled at P and M is a point on QR such that PM ⊥ QR. Show that PM2 = QM × MR.
Answer
Add a comment
Add a comment
1 Answer
0
04/06/2021 12:19 pm
Given, ΔPQR is right angled at P is a point on QR such that PM ⊥QR
We have to prove, PM2 = QM × MR
In ΔPQM, by Pythagoras theorem
PQ2 = PM2 + QM2
Or, PM2 = PQ2 – QM2 ……………………………..(i)
In ΔPMR, by Pythagoras theorem
PR2 = PM2 + MR2
Or, PM2 = PR2 – MR2 …………………..(ii)
Adding equation, (i) and (ii), we get,
2PM2 = (PQ2 + PM2) – (QM2 + MR2)
= QR2 – QM2 – MR2 [∴ QR2 = PQ2 + PR2]
= (QM + MR)2 – QM2 – MR2
= 2QM × MR
∴ PM2 = QM × MR
This post was modified 4 years ago by Raavi Tiwari
Add a comment
Add a comment
Forum Jump:
Related Topics
-
Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod.
4 years ago
-
In Figure, D is a point on side BC of ∆ ABC such that BD/CD = AB/AC. Prove that AD is the bisector of ∠BAC.
4 years ago
-
In Figure, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that: (i) ∆ PAC ~ ∆ PDB (ii) PA.PB = PC.PD.
4 years ago
-
In Figure, two chords AB and CD intersect each other at the point P. Prove that : (i) ∆APC ~ ∆ DPB (ii) AP.PB = CP.DP
4 years ago
-
Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.
4 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 2 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed