Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod.
Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see Figure)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?
To find AC, we have to use Pythagoras theorem in ∆ABC, is such way;
AC^{2} = AB^{2}+ BC^{2}
AB^{2 }= (1.8 m)^{2} + (2.4 m)^{2}
AB^{2 }= (3.24 + 5.76) m^{2}
AB^{2} = 9.00 m^{2}
⟹ AB = √9 m = 3m
Thus, the length of the string out is 3 m.
As its given, she pulls the string at the rate of 5 cm per second.
Therefore, string pulled in 12 seconds = 12 × 5 = 60 cm = 0.6 m
Let us say now, the fly is at point D after 12 seconds.
Length of string out after 12 seconds is AD.
AD = AC − String pulled by Nazima in 12 seconds
= (3.00  0.6) m
= 2.4 m
In ∆ADB, by Pythagoras Theorem,
AB^{2} + BD^{2} = AD^{2}
(1.8 m)^{2} + BD^{2} = (2.4 m)^{ 2}
BD^{2} = (5.76 − 3.24) m^{2} = 2.52 m^{2}
BD = 1.587 m
Horizontal distance of fly = BD + 1.2 m
= (1.587 + 1.2) m = 2.787 m
= 2.79 m

In Figure, D is a point on side BC of ∆ ABC such that BD/CD = AB/AC. Prove that AD is the bisector of ∠BAC.
3 years ago

In Figure, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that: (i) ∆ PAC ~ ∆ PDB (ii) PA.PB = PC.PD.
3 years ago

In Figure, two chords AB and CD intersect each other at the point P. Prove that : (i) ∆APC ~ ∆ DPB (ii) AP.PB = CP.DP
3 years ago

Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.
3 years ago

In Figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that : (i) AC^2 = AD^2 + BC.DM + 2 (BC/2)^2
3 years ago
 321 Forums
 27.3 K Topics
 53.8 K Posts
 0 Online
 12.4 K Members