Forum

In the figure, ABC ...
 
Notifications
Clear all

In the figure, ABC and AMP are two right triangles, right angled at B and M respectively, prove that: (i) ΔABC ~ ΔAMP (ii) CA/PA = BC/MP

1 Posts
2 Users
0 Likes
332 Views
0
Topic starter

In the figure, ABC and AMP are two right triangles, right angled at B and M respectively, prove that:

(i) ΔABC ~ ΔAMP

(ii) CA/PA = BC/MP

1 Answer
0

Given, ABC and AMP are two right triangles, right angled at B and M respectively.

(i) In ΔABC and ΔAMP, we have,

∠CAB = ∠MAP (common angles)

∠ABC = ∠AMP = 90° (each 90°)

∴ ΔABC ~ ΔAMP (AA similarity criterion)

(ii) As, ΔABC ~ ΔAMP (AA similarity criterion)

If two triangles are similar then the corresponding sides are always equal,

Hence, CA/PA = BC/MP

Share:

How Can We Help?