Notifications
Clear all
Explain why 7 × 11 × 13 + 13 and 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 are composite numbers.
Real Numbers
1
Posts
2
Users
0
Likes
548
Views
0
24/05/2021 11:43 am
Topic starter
Explain why 7 × 11 × 13 + 13 and 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 are composite numbers.
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
24/05/2021 11:45 am
By the definition of composite number, we know, if a number is composite, then it means it has factors other than 1 and itself. Therefore, for the given expression;
7 × 11 × 13 + 13
Taking 13 as common factor, we get,
=13(7 × 11 × 1 + 1) = 13(77+1) = 13×78 = 13 × 3 × 2 × 13
Hence, 7 × 11 × 13 + 13 is a composite number.
Now let’s take the other number,
7 × 6 × 5 × 4 × 3 × 2 × 1 + 5
Taking 5 as a common factor, we get,
=5(7×6×4×3×2×1+1) = 5(1008+1) = 5×1009
Hence, 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 is a composite number.
Add a comment
Add a comment
Forum Jump:
Related Topics
-
The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form, p q what can you say about the prime factors of q? (i) 43.123456789 (ii) 0.120120012000...
4 years ago
-
Without actually performing the long division, state whether the following rational numbers (i) 23/(2^35^2) (ii) 129/(2^25^77^5) (iii) 6/15 (iv) 35/50
4 years ago
-
Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: (i) 13/3125 (ii) 17/8 (iii) 64/455
4 years ago
-
Prove that the following are irrationals: (i) 1/√2 (ii) 7√5 (iii) 6 + √2
4 years ago
-
Prove that 3 + 2√5 is irrational.
4 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 4 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed