sin (A + B) = sin A + sin B. (ii) The value of sin θ increases as θ increases. (iii) The value of cos θ increases as θ increases
State whether the following are true or false. Justify your answer.
(i) sin (A + B) = sin A + sin B.
(ii) The value of sin θ increases as θ increases.
(iii) The value of cos θ increases as θ increases.
(iv) sin θ = cos θ for all values of θ.
(v) cot A is not defined for A = 0°.
(i) False.
Let us take A = 30° and B = 60°, then
Substitute the values in the sin (A + B), we get
sin (A + B) = sin (30° + 60°) = sin 90° = 1 and,
sin A + sin B = sin 30° + sin 60°
= 1/2 + √3/2 = 1+√3/2
Since the values obtained are not equal, the solution is false.
(ii) True.
sin 0° = 0
sin 30° = 1/2
sin 45° = 1/√2
sin 60° = √3/2
sin 90° = 1
Thus the value of sin θ increases as θ increases. Hence, the statement is true
(iii) False.
cos 0° = 1
cos 30° = √3/2
cos 45° = 1/√2
cos 60° = 1/2
cos 90° = 0
Thus, the value of cos θ decreases as θ increases. So, the statement given above is false.
(iv) False
sin θ = cos θ, when a right triangle has 2 angles of (π/4).
(v) True.
Since cot function is the reciprocal of the tan function, it is also written as:
cot A = cos A/sin A
Now substitute A = 0°
cot 0° = cos 0°/sin 0° = 1/0 = undefined.
Hence, it is true
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
4 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
4 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
4 years ago
-
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
4 years ago
-
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
4 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 31 Online
- 12.4 K Members