Notifications
Clear all
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
Introduction to Trigonometry
1
Posts
2
Users
0
Likes
293
Views
0
16/06/2021 11:42 am
Topic starter
Evaluate:
\(\frac{sin θ – 2sin^3θ}{2cos^3θ-cos θ}\) = tan θ
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
16/06/2021 11:44 am
\(\frac{sin θ – 2sin^3θ}{2cos^3θ-cos θ}\) = tan θ
L.H.S. = \(\frac{sin θ \; – 2sin^3θ}{2cos^3θ-\;cos θ}\)
Take sin θ as in numerator and cos θ in denominator as outside, it becomes
= [sin θ(1 – 2sin2θ)]/[cos θ(2cos2θ- 1)]
We know that sin2θ = 1-cos2θ
= sin θ[1 – 2(1-cos2θ)]/[cos θ(2cos2θ -1)]
= [sin θ(2cos2θ -1)]/[cos θ(2cos2θ -1)]
= tan θ = R.H.S.
Add a comment
Add a comment
Forum Jump:
Related Topics
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
3 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
3 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
3 years ago
-
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
3 years ago
-
(cos A – sin A+1)/( cos A +sin A–1) = cosec A + cot A, using the identity cosec^2A = 1 + cot^2A.
3 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 0 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed