Notifications
Clear all
In triangle ABC, right-angled at B, if tan A = 1/√3 find the value of: (i) sin A cos C + cos A sin C (ii) cos A cos C – sin A sin C
Introduction to Trigonometry
1
Posts
2
Users
0
Likes
306
Views
0
12/06/2021 11:57 am
Topic starter
In triangle ABC, right-angled at B, if tan A = 1/√3 find the value of:
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
12/06/2021 11:58 am
Let ΔABC in which ∠B = 90°
tan A = BC/AB = 1/√3
Let BC = 1k and AB = √3k,
Where k is the positive real number of the problem
By Pythagoras theorem in ΔABC we get:
AC2= AB2+ BC2
AC2= (√3 k)2+(k)2
AC2 = 3k2+k2
AC2= 4k2
AC = 2k
Now find the values of cos A, Sin A
Sin A = BC/AC = 1/2
Cos A = AB/AC = √3/2
Then find the values of cos C and sin C
Sin C = AB/AC = √3/2
Cos C = BC/AC = 1/2
Now, substitute the values in the given problem
(i) sin A cos C + cos A sin C = (1/2) ×(1/2 )+ √3/2 ×√3/2 = 1/4 + 3/4 = 1
(ii) cos A cos C – sin A sin C = (√3/2 )(1/2) – (1/2) (√3/2 ) = 0
Add a comment
Add a comment
Forum Jump:
Related Topics
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
4 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
4 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
4 years ago
-
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
4 years ago
-
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
4 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 2 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed