Notifications
Clear all
If tan (A + B) = √3 and tan (A – B) = 1/√3, 0° < A + B ≤ 90°; A > B, find A and B.
Introduction to Trigonometry
1
Posts
2
Users
0
Likes
264
Views
0
13/06/2021 11:25 am
Topic starter
If tan (A + B) = √3 and tan (A – B) = 1/√3, 0° < A + B ≤ 90°; A > B, find A and B.
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
13/06/2021 11:27 am
tan (A + B) = √3
Since √3 = tan 60°
Now substitute the degree value
tan (A + B) = tan 60°
(A + B) = 60° …....(i)
The above equation is assumed as equation (i)
tan (A – B) = 1/√3
Since 1/√3 = tan 30°
Now substitute the degree value
⇒ tan (A – B) = tan 30°
(A – B) = 30° …....... (ii)
Now add the equation (i) and (ii), we get
A + B + A – B = 60° + 30°
Cancel the terms B
2A = 90°
A = 45°
Now, substitute the value of A in equation (i) to find the value of B
45° + B = 60°
B = 60° – 45°
B = 15°
Therefore A = 45° and B = 15°
Add a comment
Add a comment
Forum Jump:
Related Topics
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
4 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
4 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
4 years ago
-
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
4 years ago
-
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
4 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 8 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed