Forum

If cot θ = 7/8, eva...
 
Notifications
Clear all

If cot θ = 7/8, evaluate : (i) (1 + sin θ)(1 – sin θ)/(1+cos θ)(1-cos θ) (ii) cot^2 θ

1 Posts
2 Users
0 Likes
287 Views
0
Topic starter

If cot θ = 7/8, evaluate :

(i) (1 + sin θ)(1 – sin θ)/(1+cos θ)(1-cos θ)

(ii) cot2 θ

1 Answer
0

Let us assume a △ABC in which ∠B = 90° and ∠C = θ

cot θ = BC/AB = 7/8

Let BC = 7k and AB = 8k, where k is a positive real number

According to Pythagoras theorem in △ABC we get.

AC= AB2 + BC2

AC= (8k)2 + (7k)2

AC= 64k2 + 49k2

AC= 113k2

AC = √113 k

According to the sine and cos function ratios, it is written as

sin θ = AB/AC = Opposite Side/Hypotenuse

= 8k/√113 k = 8/√113 and

cos θ = Adjacent Side/Hypotenuse = BC/AC

= 7k/√113 k = 7/√113

(i) \(\frac{(1+ sin \theta)(1- sin \theta)}{(1+ cos \theta)(1-cos \theta)}\) = \(\frac{1-sin^2 \theta}{1-cos^2 \theta}\)

= \( \frac{1-(\frac{8}{\sqrt{113}})^2}{1-(\frac{7}{\sqrt{113}})^2} \) = \(\frac{49}{64} \)

(ii) \(cot^2 \theta = (\frac{7}{8})^2\) = \(\frac{49}{64}\)

This post was modified 4 years ago 2 times by Raavi Tiwari
Share:

How Can We Help?