If cot θ = 7/8, evaluate : (i) (1 + sin θ)(1 – sin θ)/(1+cos θ)(1-cos θ) (ii) cot^2 θ
If cot θ = 7/8, evaluate :
(i) (1 + sin θ)(1 – sin θ)/(1+cos θ)(1-cos θ)
(ii) cot2 θ
Let us assume a △ABC in which ∠B = 90° and ∠C = θ
cot θ = BC/AB = 7/8
Let BC = 7k and AB = 8k, where k is a positive real number
According to Pythagoras theorem in △ABC we get.
AC2 = AB2 + BC2
AC2 = (8k)2 + (7k)2
AC2 = 64k2 + 49k2
AC2 = 113k2
AC = √113 k
According to the sine and cos function ratios, it is written as
sin θ = AB/AC = Opposite Side/Hypotenuse
= 8k/√113 k = 8/√113 and
cos θ = Adjacent Side/Hypotenuse = BC/AC
= 7k/√113 k = 7/√113
(i) \(\frac{(1+ sin \theta)(1- sin \theta)}{(1+ cos \theta)(1-cos \theta)}\) = \(\frac{1-sin^2 \theta}{1-cos^2 \theta}\)
= \( \frac{1-(\frac{8}{\sqrt{113}})^2}{1-(\frac{7}{\sqrt{113}})^2} \) = \(\frac{49}{64} \)
(ii) \(cot^2 \theta = (\frac{7}{8})^2\) = \(\frac{49}{64}\)
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
4 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
4 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
4 years ago
-
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
4 years ago
-
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
4 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 23 Online
- 12.4 K Members