Forum

If 3 cot A = 4, che...
 
Notifications
Clear all

If 3 cot A = 4, check whether (1-tan^2 A)/(1+tan^2 A) = cos^2 A – sin^2 A or not.

1 Posts
2 Users
0 Likes
178 Views
0
Topic starter

If 3 cot A = 4, check whether (1-tanA)/(1+tan2 A) = cos2 A – sin A or not.

1 Answer
0

Let △ABC in which ∠B = 90°

cot(A) = AB/BC = 4/3

Let AB = 4k an BC = 3k, where k is a positive real number.

According to the Pythagorean theorem,

AC2 = AB2 + BC2

AC2 = (4k)2+(3k)2

AC2 = 16k2+9k2

AC2 = 25k2

AC = 5k

Now, apply the values corresponding to the ratios

tan(A) = BC/AB = 3/4

sin (A) = BC/AC = 3/5

cos (A) = AB/AC = 4/5

Now compare the left hand side(LHS) with right hand side(RHS)

L.H.S = \(\frac{1-tan^2A}{1+tan^2A}\) = \(\frac{1-(\frac{3}{4})^2}{1+(\frac{3}{4})^2}\) = \(\frac{1-\frac{9}{16}}{1+\frac{9}{16}}\) = \(\frac{7}{25}\)

R.H.S = \(cos^2A - sin^2A\) = \((\frac{4}{5})^2- (\frac{3}{5})^2\) = \(\frac{16}{25}-\frac{9}{25}\) = \(\frac{7}{25}\)

Since, both the LHS and RHS = 7/25

R.H.S. =L.H.S.

Hence, (1-tanA)/(1+tan2 A) = cos2 A – sin A  is proved

This post was modified 3 years ago by Raavi Tiwari
Share:

How Can We Help?