Notifications
Clear all
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.
Introduction to Trigonometry
1
Posts
2
Users
0
Likes
206
Views
0
13/06/2021 12:04 pm
Topic starter
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
13/06/2021 12:05 pm
Given,
sin 67° + cos 75°
sin 67° = sin (90° – 23°)
cos 75° = cos (90° – 15°)
So, sin 67° + cos 75° = sin (90° – 23°) + cos (90° – 15°)
Now, simplify the above equation
= cos 23° + sin 15°
Therefore, sin 67° + cos 75° is also expressed as cos 23° + sin 15°
Add a comment
Add a comment
Forum Jump:
Related Topics
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
3 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
3 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
3 years ago
-
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
3 years ago
-
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
3 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 0 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed