Forum

Evaluate: tan θ/(1 ...
 
Notifications
Clear all

Evaluate: tan θ/(1 - cot θ) + cot θ/(1 - tan θ) = 1 + sec θ cosec θ

1 Posts
2 Users
0 Likes
371 Views
0
Topic starter

Evaluate:

tan θ/(1 - cot θ) + cot θ/(1 - tan θ) = 1 + sec θ cosec θ

1 Answer
0

tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ

L.H.S. = tan θ/(1-cot θ) + cot θ/(1-tan θ)

We know that tan θ =sin θ/cos θ

cot θ = cos θ/sin θ

= [(sin θ/cos θ)/1-(cos θ/sin θ)] + [(cos θ/sin θ)/1-(sin θ/cos θ)]

= [(sin θ/cos θ)/(sin θ-cos θ)/sin θ] + [(cos θ/sin θ)/(cos θ-sin θ)/cos θ]

= sin2θ/[cos θ(sin θ-cos θ)] + cos2θ/[sin θ(cos θ-sin θ)]

= sin2θ/[cos θ(sin θ-cos θ)] – cos2θ/[sin θ(sin θ-cos θ)]

= 1/(sin θ-cos θ) [(sin2θ/cos θ) – (cos2θ/sin θ)]

= 1/(sin θ-cos θ) × [(sin3θ – cos3θ)/sin θ cos θ]

= [(sin θ-cos θ)(sin2θ+cos2θ+sin θ cos θ)]/[(sin θ-cos θ)sin θ cos θ]

= (1 + sin θ cos θ)/sin θ cos θ

= 1/sin θ cos θ + 1

= 1 + sec θ cosec θ = R.H.S.

Therefore, L.H.S. = R.H.S.

Hence proved

Share:

How Can We Help?