Evaluate: (sin 30° + tan 45° - cosec 60°)/(sec 30° + cos 60° + cot 45°)
Evaluate:
\(\frac{sin 30° + tan 45° - cosec 60°}{sec 30° + cos 60° + cot 45°}\)
Given,
\(\frac{sin 30° + tan 45° - cosec 60°}{sec 30° + cos 60° + cot 45°}\)
We know that,
sin 30° = \(\frac{1}{2}\)
tan 45° = 1
cosec 60° = 2/√3
sec 30° = 2/√3
cos 60° = \(\frac{1}{2}\)
cot 45° = 1
Substitute the values in the given problem, we get
\(\frac{sin 30° + tan 45° - cosec 60°}{sec 30° + cos 60° + cot 45°}\)
= \(\frac{\frac{1}{2} + 1 - \frac{2}{\sqrt3}}{\frac{2}{\sqrt3}+\frac{1}{2}+1}\)
= \(\frac{\frac{\sqrt2+2\sqrt3-4}{2\sqrt3}}{\frac{4+\sqrt3+2\sqrt3}{2\sqrt3}}\)
Now, cancel the term \(2\sqrt3\), in numerator and denominator,
we get,
= \(\frac{\sqrt3 +2\sqrt3-4}{4+\sqrt3+2\sqrt3}\)
= \(\frac{3\sqrt3-4}{3\sqrt3+4}\)
Now, rationalize the terms
= \(\frac{3\sqrt3-4}{3\sqrt3+4}\times\)\(\frac{3\sqrt3-4}{3\sqrt3-4}\)
= \(\frac{27-12\sqrt3-12\sqrt3+16}{27-12\sqrt3+12\sqrt3+16}\)
= \(\frac{27-24\sqrt3+16}{11}\)
= \(\frac{43-24\sqrt3}{11}\)
\(\frac{sin 30° + tan 45° - cosec 60°}{sec 30° + cos 60° + cot 45°}\)
= \(\frac{43-24\sqrt3}{11}\)
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
3 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
3 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
3 years ago
-
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
3 years ago
-
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
3 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 1 Online
- 12.4 K Members