Notifications
Clear all
Evaluate: (i) (sin^2 63° + sin^2 27°)/(cos^2 17° + cos^2 73°) (ii) sin 25° cos 65° + cos 25° sin 65°
Introduction to Trigonometry
1
Posts
2
Users
0
Likes
229
Views
0
16/06/2021 10:49 am
Topic starter
Evaluate:
(i) \(\frac{sin^2 63° + sin^2 27°}{cos^2 17° + cos^2 73°}\)
(ii) sin 25° cos 65° + cos 25° sin 65°
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
16/06/2021 10:54 am
(i) \(\frac{sin^2 63° + sin^2 27°}{cos^2 17° + cos^2 73°}\)
= \(\frac{sin^2 (90°-27°) + sin^2 27°}{cos^2 (90°-73°) + cos^2 73°}\)
= \(\frac{sin^2 27° + sin^2 27°}{cos^2 27° + cos^2 73°}\)
= 1/1 = 1 (since sin2A + cos2A = 1)
Therefore, \(\frac{sin^2 63° + sin^2 27°}{cos^2 17° + cos^2 73°}\) = 1
(ii) sin 25° cos 65° + cos 25° sin 65°
= sin(90°-25°) cos 65° + cos (90°-65°) sin 65°
= cos 65° cos 65° + sin 65° sin 65°
= cos265° + sin265° = 1 (since sin2A + cos2A = 1)
Therefore, sin 25° cos 65° + cos 25° sin 65° = 1
Add a comment
Add a comment
Forum Jump:
Related Topics
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
3 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
3 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
3 years ago
-
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
3 years ago
-
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
3 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 0 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed