Evaluate: cos 45°/(sec 30°+cosec 30°)
Evaluate:
\(\frac{cos 45°}{sec30° + cosec 30°}\)
\(\frac{cos 45°}{sec30° + cosec 30°}\)
We know that,
cos 45° = 1/√2
sec 30° = 2/√3
cosec 30° = 2
Substitute the values, we get
\(\frac{cos 45°}{sec30° + cosec 30°}\) = \(\frac{\frac{1}{\sqrt 2}}{\frac{2}{\sqrt 3} + 2}\) = \(\frac{\frac{1}{\sqrt 2}}{\frac{2+2 \sqrt 3}{\sqrt 3}}\)
= \(\frac{1}{\sqrt 2} \times \frac{\sqrt 3}{2+2 \sqrt 3} \)
= \(\frac{1}{\sqrt 2} \times \frac{\sqrt 3}{2(1+ \sqrt 3)} \)
= \(\frac{\sqrt 3}{2 \sqrt 2 (1+ \sqrt 3)} \)
= \(\frac{\sqrt 3}{2 \sqrt 2 (\sqrt 3 + 1)} \)
Now, rationalize the terms we get,
= \(\frac{\sqrt 3}{2 \sqrt 2 (\sqrt 3 + 1)}\times \) \(\frac{\sqrt 3 - 1}{\sqrt 3 - 1}\)
= \(\frac{3-\sqrt 3}{2 \sqrt 2 (2)} \)
Now, multiply both the numerator and denominator by √2 , we get
= \(\frac{3-\sqrt 3}{2 \sqrt 2 (2)} \times \frac{\sqrt 2}{\sqrt 2} \) = \(\frac{3\sqrt 2 - \sqrt 3 \sqrt 2}{8} \)
= \(\frac{3\sqrt 2 - \sqrt 6}{8} \)
Therefore, cos 45°/(sec 30°+cosec 30°)
= \(\frac{3\sqrt 2 - \sqrt 6}{8} \)
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
4 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
4 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
4 years ago
-
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
4 years ago
-
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
4 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 31 Online
- 12.4 K Members