Notifications
Clear all
[Solved] Evaluate: (5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)
Introduction to Trigonometry
1
Posts
2
Users
1
Likes
258
Views
0
12/06/2021 1:04 pm
Topic starter
Evaluate:
\(\frac{5cos^2 60° + 4sec^2 30° - tan^2 45°}{sin^2 30° + cos^2 30°}\)
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
1
12/06/2021 1:09 pm
\(\frac{5cos^2 60° + 4sec^2 30° - tan^2 45°}{sin^2 30° + cos^2 30°}\)
We know that,
cos 60° = 1/2
sec 30° = 2/√3
tan 45° = 1
sin 30° = 1/2
cos 30° = √3/2
Now, substitute the values in the given problem, we get
\(\frac{5cos^2 60° + 4sec^2 30° - tan^2 45°}{sin^2 30° + cos^2 30°}\)
\(\frac{5(\frac{1}{2})^2+ 4(\frac{2}{\sqrt3})^2-1^2}{(\frac{1}{2})^2 + (\frac{\sqrt3}{2})^2}\)
= (5/4+16/3-1)/(1/4+3/4)
= (15+64-12)/12/(4/4)
= 67/12
Add a comment
Add a comment
Forum Jump:
Related Topics
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
4 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
4 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
4 years ago
-
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
4 years ago
-
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
4 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 3 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed