Notifications
Clear all
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
Introduction to Trigonometry
1
Posts
2
Users
0
Likes
390
Views
0
16/06/2021 11:32 am
Topic starter
Evaluate:
\(\sqrt{\frac{1\;+ \;sin\;A}{1\;- \;sin\;A}}\) = sec A + tan A
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
16/06/2021 11:38 am
\(\sqrt{\frac{1\;+ \;sin\;A}{1\;- \;sin\;A}}\) = sec A + tan A
L.H.S = \(\sqrt{\frac{1\;+ \;sin\;A}{1\;- \;sin\;A}}\)
First divide the numerator and denominator of L.H.S. by cos A,
\(\sqrt{\frac{\frac{1}{cos A}+ \frac{sin A}{cos A}}{\frac{1}{cos A}- \frac{sin A}{cos A}}}\)
We know that 1/cos A = sec A and sin A/ cos A = tan A and it becomes,
= \(\sqrt{\frac{secA + tan A}{sec A - tan A}}\)
Now using rationalization, we get
= \(\sqrt{\frac{secA + tan A}{sec A - tan A}}\times \)\(\sqrt{\frac{secA + tan A}{sec A + tan A}}\)
= \(\sqrt{\frac{(secA + tan A)^2}{sec^2 A - tan^2 A}}\)
\(\frac{secA + tan A}{1}\)
= sec A + tan A = R.H.S
Hence proved
Add a comment
Add a comment
Forum Jump:
Related Topics
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
3 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
3 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
3 years ago
-
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
3 years ago
-
(cos A – sin A+1)/( cos A +sin A–1) = cosec A + cot A, using the identity cosec^2A = 1 + cot^2A.
3 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 0 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed