Forum

(1 + tan^2A/1 + cot...
 
Notifications
Clear all

(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A

1 Posts
2 Users
0 Likes
234 Views
0
Topic starter

Evaluate:

(1 + tan2A/1 + cot2A) = (1 - tan A/1 - cot A)2 = tan2A

1 Answer
0

(1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 = tan2A

L.H.S. = (1+tan2A/1+cot2A)

Since cot function is the inverse of tan function,

= (1+tan2A/1 + 1/tan2A)

= 1+tan2A/[(1+tan2A)/tan2A]

Now cancel the 1 + tan2A terms, we get

= tan2A

(1+tan2A/1+cot2A) = tan2A

(1-tan A/1-cot A)2 = tan2A

Hence proved

Share:

How Can We Help?