Notifications
Clear all
1 + tan^2A/1 + cot^2A =
Introduction to Trigonometry
1
Posts
2
Users
0
Likes
208
Views
0
16/06/2021 11:09 am
Topic starter
Choose the correct option. Justify your choice.
1 + tan2A/1 + cot2A =
(A) sec2 A
(B) -1
(C) cot2A
(D) tan2A
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
16/06/2021 11:11 am
Correct option: (D) tan2A
Explanation:
We know that,
tan2A = 1/cot2A
Now, substitute this in the given problem, we get
1+tan2A/1+cot2A
= (1+1/cot2A)/1+cot2A
= (cot2A + 1/cot2A) × (1/1 + cot2A)
= 1/cot2A = tan2A
So, 1+tan2A/1 + cot2A = tan2A
Add a comment
Add a comment
Forum Jump:
Related Topics
-
(1 + tan^2A/1 + cot^2A) = (1 - tan A/1 - cot A)^2 = tan^2A
3 years ago
-
Evaluate: (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA)
3 years ago
-
(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
3 years ago
-
(sin θ – 2sin^3θ)/(2cos^3θ-cos θ) = tan θ
3 years ago
-
Evaluate: √(1+sin A/1-sin A) = sec A + tan A
3 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 0 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed