Notifications
Clear all
In Figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that (i) ar (PQRS) = ar (ABRS)
Areas of Parallelograms and Triangles
1
Posts
2
Users
0
Likes
200
Views
0
15/07/2021 1:01 pm
Topic starter
In Figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that
(i) ar (PQRS) = ar (ABRS)
(ii) ar (AXS) = ar \(\frac{1}{2}\) (PQRS)
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
15/07/2021 1:02 pm
(i) Parallelogram PQRS and ABRS lie on the same base SR and in-between the same parallel lines SR and PB.
∴ ar(PQRS) = ar(ABRS) — (i)
(ii) ΔAXS and parallelogram ABRS are lying on the same base AS and in-between the same parallel lines AS and BR.
∴ ar(ΔAXS) = \(\frac{1}{2}\) ar(ABRS) — (ii)
From (i) and (ii), we find that,
ar(ΔAXS) = \(\frac{1}{2}\) ar(PQRS)
Add a comment
Add a comment
Forum Jump:
Related Topics
-
In Figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX DE meets BC at Y. Show that:
3 years ago
-
P and Q are respectively the mid-points of sides AB and BC of a triangle ABC and R is the mid-point of AP, show that:
3 years ago
-
Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar (APB) × ar (CPD) = ar (APD)×ar (BPC).
3 years ago
-
In Figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that:
3 years ago
-
In Figure, ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersects DC at P, show that ar (BPC) = ar (DPQ).
3 years ago
Topic Tags:
class 9 (4384)
,
cbse (15084)
,
ncert (13840)
,
areas of parallelograms (31)
,
triangles (121)
,
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 0 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed