Notifications
Clear all
Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar(△AOD) = ar(△BOC). Prove that ABCD is a trapezium.
Areas of Parallelograms and Triangles
1
Posts
2
Users
0
Likes
621
Views
0
17/07/2021 11:20 am
Topic starter
Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar(△AOD) = ar(△BOC). Prove that ABCD is a trapezium.
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
17/07/2021 11:22 am
Given,
ar(△AOD) = ar(△BOC)
To Prove
ABCD is a trapezium.
Proof:
ar(△AOD) = ar(△BOC)
⇒ ar(△AOD) + ar(△AOB) = ar(△BOC) + ar(△AOB)
⇒ ar(△ADB) = ar(△ACB)
Areas of △ADB and △ACB are equal.
∴ they must lying between the same parallel lines.
∴ AB ∥ CD
∴ ABCD is a trapezium.
Add a comment
Add a comment
Forum Jump:
Related Topics
-
In Figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX DE meets BC at Y. Show that:
3 years ago
-
P and Q are respectively the mid-points of sides AB and BC of a triangle ABC and R is the mid-point of AP, show that:
3 years ago
-
Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar (APB) × ar (CPD) = ar (APD)×ar (BPC).
3 years ago
-
In Figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that:
3 years ago
-
In Figure, ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersects DC at P, show that ar (BPC) = ar (DPQ).
3 years ago
Topic Tags:
class 9 (4384)
,
cbse (15084)
,
ncert (13840)
,
areas of parallelograms (31)
,
triangles (121)
,
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 0 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed