Notifications
Clear all
A drinking glass is in the shape of a frustum of a cone of height 14 cm. The diameters of its two circular ends are 4 cm and 2 cm. Find the capacity of the glass.
Surface Areas and Volumes
1
Posts
2
Users
0
Likes
180
Views
0
01/07/2021 1:03 pm
Topic starter
A drinking glass is in the shape of a frustum of a cone of height 14 cm. The diameters of its two circular ends are 4 cm and 2 cm. Find the capacity of the glass.
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
01/07/2021 1:05 pm
Radius (r1) of the upper base = 4/2 = 2 cm
Radius (r2) of lower the base = 2/2 = 1 cm
Height = 14 cm
Now, Capacity of glass = Volume of frustum of cone
Capacity of glass = (1/3) × π × h(r12+r22+r1r2)
= (1/3) × π × (14)(22+12+ (2)(1))
∴ The capacity of the glass = 102 × (2/3) cm3
Add a comment
Add a comment
Forum Jump:
Related Topics
-
Derive the formula for the volume of the frustum of a cone.
3 years ago
-
Derive the formula for the curved surface area and total surface area of the frustum of a cone, given to you in Section 13.5, using the symbols as explained.
3 years ago
-
An oil funnel made of tin sheet consists of a 10 cm long cylindrical portion attached to a frustum of a cone. If the total height is 22 cm
3 years ago
-
In one fortnight of a given month, there was a rainfall of 10 cm in a river valley. If the area of the valley is 97280 km^2
3 years ago
-
A cistern, internally measuring 150 cm × 120 cm × 100 cm, has 129600 cm^3 of water in it. Porous bricks are placed in the water until the cistern is full to the brim.
3 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 0 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed