A cylindrical bucket, 32 cm high and with radius of base 18 cm, is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed.
A cylindrical bucket, 32 cm high and with radius of base 18 cm, is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm, find the radius and slant height of the heap.
Height (h1) of cylindrical part of the bucket = 32 cm
Radius (r1) of circular end of the bucket = 18 cm
Height of the conical heap ((h2) = 24 cm
Now, let “r2” be the radius of the circular end of the conical heap.
We know that volume of the sand in the cylindrical bucket will be equal to the volume of sand in the conical heap.
∴ Volume of sand in the cylindrical bucket = Volume of sand in conical heap
π×r12 × h1 = (1/3) × π × r22 × h2
π × 182 × 32 = (1/3) × π × r22 × 24
r2 = 36 cm
Slant height (l) = √(362+242)
= 12√13 cm.
-
Derive the formula for the volume of the frustum of a cone.
3 years ago
-
Derive the formula for the curved surface area and total surface area of the frustum of a cone, given to you in Section 13.5, using the symbols as explained.
3 years ago
-
An oil funnel made of tin sheet consists of a 10 cm long cylindrical portion attached to a frustum of a cone. If the total height is 22 cm
3 years ago
-
In one fortnight of a given month, there was a rainfall of 10 cm in a river valley. If the area of the valley is 97280 km^2
3 years ago
-
A cistern, internally measuring 150 cm × 120 cm × 100 cm, has 129600 cm^3 of water in it. Porous bricks are placed in the water until the cistern is full to the brim.
3 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 0 Online
- 12.4 K Members