Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8.
Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8.
Let x be any positive integer and y = 3.
By Euclid’s division algorithm, then,
x = 3q + r, where q ≥ 0 and r = 0, 1, 2, as r ≥ 0 and r < 3.
Therefore, putting the value of r, we get,
x = 3q
or
x = 3q + 1
or
x = 3q + 2
Now, by taking the cube of all the three above expressions, we get,
Case (i): When r = 0, then,
x2= (3q)3 = 27q3= 9(3q3)= 9m; where m = 3q3
Case (ii): When r = 1, then,
x3 = (3q+1)3 = (3q)3 +13+3×3q×1(3q+1) = 27q3+1+27q2+9q
Taking 9 as common factor, we get,
x3 = 9(3q3+3q2+q)+1
Putting = m, we get,
Putting (3q3+3q2+q) = m, we get ,
x3 = 9m+1
Case (iii): When r = 2, then,
x3 = (3q+2)3= (3q)3+23+3×3q×2(3q+2) = 27q3+54q2+36q+8
Taking 9 as common factor, we get,
x3=9(3q3+6q2+4q)+8
Putting (3q3+6q2+4q) = m, we get ,
x3 = 9m+8
Therefore, from all the three cases explained above, it is proved that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8.
-
The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form, p q what can you say about the prime factors of q? (i) 43.123456789 (ii) 0.120120012000...
4 years ago
-
Without actually performing the long division, state whether the following rational numbers (i) 23/(2^35^2) (ii) 129/(2^25^77^5) (iii) 6/15 (iv) 35/50
4 years ago
-
Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: (i) 13/3125 (ii) 17/8 (iii) 64/455
4 years ago
-
Prove that the following are irrationals: (i) 1/√2 (ii) 7√5 (iii) 6 + √2
4 years ago
-
Prove that 3 + 2√5 is irrational.
4 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 36 Online
- 12.4 K Members