Prove that the following are irrationals: (i) 1/√2 (ii) 7√5 (iii) 6 + √2
Prove that the following are irrationals:
(i) 1/√2
(ii) 7√5
(iii) 6 + √2
(i) 1/√2
Let us assume 1/√2 is rational.
Then we can find co-prime x and y (y ≠ 0) such that 1/√2 = x/y
Rearranging, we get,
√2 = y/x
Since, x and y are integers, thus, √2 is a rational number, which contradicts the fact that √2 is irrational.
Hence, we can conclude that 1/√2 is irrational.
(ii) 7√5
Let us assume 7√5 is a rational number.
Then we can find co-prime a and b (b ≠ 0) such that 7√5 = x/y
Rearranging, we get,
√5 = x/7y
Since, x and y are integers, thus, √5 is a rational number, which contradicts the fact that √5 is irrational.
Hence, we can conclude that 7√5 is irrational.
(iii) 6 +√2
Let us assume 6 +√2 is a rational number.
Then we can find co-primes x and y (y ≠ 0) such that 6 +√2 = x/y⋅
Rearranging, we get,
√2 = (x/y) – 6
Since, x and y are integers, thus (x/y) – 6 is a rational number and therefore, √2 is rational. This contradicts the fact that √2 is an irrational number.
Hence, we can conclude that 6 +√2 is irrational.
-
The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form, p q what can you say about the prime factors of q? (i) 43.123456789 (ii) 0.120120012000...
4 years ago
-
Without actually performing the long division, state whether the following rational numbers (i) 23/(2^35^2) (ii) 129/(2^25^77^5) (iii) 6/15 (iv) 35/50
4 years ago
-
Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: (i) 13/3125 (ii) 17/8 (iii) 64/455
4 years ago
-
Prove that 3 + 2√5 is irrational.
4 years ago
-
Prove that √5 is irrational.
4 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 3 Online
- 12.4 K Members