Notifications
Clear all
ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that: (i) ABCD is a square (ii) Diagonal BD bisects ∠B as well as ∠D.
Quadrilaterals
1
Posts
2
Users
0
Likes
257
Views
0
13/07/2021 11:48 am
Topic starter
ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that:
(i) ABCD is a square
(ii) Diagonal BD bisects ∠B as well as ∠D.
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
13/07/2021 11:49 am
(i) ∠DAC = ∠DCA (AC bisects ∠A as well as ∠C)
⇒ AD = CD (Sides opposite to equal angles of a triangle are equal)
CD = AB (Opposite sides of a rectangle)
AB = BC = CD = AD
Thus, ABCD is a square.
(ii) In ΔBCD,
BC = CD
⇒ ∠CDB = ∠CBD (Angles opposite to equal sides are equal)
∠CDB = ∠ABD (Alternate interior angles)
⇒ ∠CBD = ∠ABD
Thus, BD bisects ∠B
∠CBD = ∠ADB
⇒ ∠CDB = ∠ADB
Thus, BD bisects ∠D
Add a comment
Add a comment
Forum Jump:
Related Topics
-
ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D.
3 years ago
-
Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
3 years ago
-
In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Figure). Show that the line segments AF and EC trisect the diagonal BD.
3 years ago
-
ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC
3 years ago
-
ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
3 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 0 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed