Notifications
Clear all
Sum of the areas of two squares is 468 m^2. If the difference of their perimeters is 24 m, find the sides of the two squares.
Quadratic Equations
1
Posts
2
Users
0
Likes
358
Views
0
30/05/2021 11:58 am
Topic starter
Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
30/05/2021 11:59 am
Let the sides of the two squares be x m and y m.
Therefore, their perimeter will be 4x and 4y respectively
And area of the squares will be x2 and y2 respectively.
4x – 4y = 24
x – y = 6
x = y + 6
Also, x2 + y2 = 468
⇒ (6 + y2) + y2 = 468
⇒ 36 + y2 + 12y + y2 = 468
⇒ 2y2 + 12y + 432 = 0
⇒ y2 + 6y – 216 = 0
⇒ y2 + 18y – 12y – 216 = 0
⇒ y(y +18) -12(y + 18) = 0
⇒ (y + 18)(y – 12) = 0
⇒ y = -18, 12
As we know, the side of a square cannot be negative.
Hence, the sides of the squares are 12 m and (12 + 6) m = 18 m.
Add a comment
Add a comment
Forum Jump:
Related Topics
-
Is it possible to design a rectangular park of perimeter 80 and area 400 m^2? If so find its length and breadth.
4 years ago
-
Is the following situation possible? If so, determine their present ages. The sum of the ages of two friends is 20 years. Four years ago, the product of their ages in years was 48.
4 years ago
-
Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is 800 m^2? If so, find its length and breadth.
4 years ago
-
Find the values of k for each of the following quadratic equations, so that they have two equal roots. (i) 2x^2 + kx + 3 = 0 (ii) kx (x – 2) + 6 = 0
4 years ago
-
Find the nature of the roots of the following quadratic equations. If the real roots exist, find them; 2x^2 – 6x + 3 = 0
4 years ago
Currently viewing this topic 1 guest.
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 2 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed