Notifications
Clear all
What are the possible expressions for the dimensions of the cuboids whose volumes are given below? (i) Volume : 3x^2 – 12x (ii) Volume : 12ky^2 + 8ky – 20k
Polynomials
1
Posts
2
Users
0
Likes
249
Views
0
07/07/2021 11:14 am
Topic starter
What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
(i) Volume : 3x2 – 12x
(ii) Volume : 12ky2 + 8ky – 20k
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
0
07/07/2021 11:15 am
(i) Volume : 3x2–12x
3x2 – 12x can be written as 3x(x–4) by taking 3x out of both the terms.
Possible expression for length = 3
Possible expression for breadth = x
Possible expression for height = (x–4)
(ii) Volume: 12ky2 + 8ky – 20k
12ky2 + 8ky – 20k can be written as 4k(3y2+2y–5) by taking 4k out of both the terms.
12ky2 + 8ky – 20k = 4k(3y2+2y–5)
[Here, 3y2+2y–5 can be written as 3y2+5y–3y–5 using splitting the middle term method.]
= 4k(3y2+5y–3y–5)
= 4k[y(3y+5)–1(3y+5)]
= 4k(3y+5)(y–1)
Possible expression for length = 4k
Possible expression for breadth = (3y +5)
Possible expression for height = (y -1)
Add a comment
Add a comment
Forum Jump:
Related Topics
-
Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given: (i) Area : 25a^2 – 35a + 12 (ii) Area : 35y^2 + 13y – 12
3 years ago
-
Without actually calculating the cubes, find the value of each of the following: (i) (−12)^3 + (7)^3 + (5)^3 (ii) (28)^3 + (−15)^3 + (−13)^3
3 years ago
-
If x + y + z = 0, show that x^3+ y^3 + z^3 = 3xyz.
3 years ago
-
Verify that: x^3 + y^3 + z^3 – 3xyz = (1/2) (x+y+z)[(x–y)^2+(y–z)^2+(z–x)^2]
3 years ago
-
Factorise: 27x^3 + y^3 + z^3 – 9xyz
3 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 1 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed