Forum

Find the remainder ...
 
Notifications
Clear all

Find the remainder when x^3 + 3x^2 + 3x + 1 is divided by (i) x + 1 (ii) x − 1/2 (iii) x (iv) x + π (v) 5 + 2x

1 Posts
2 Users
0 Likes
299 Views
0
Topic starter

Find the remainder when x3 + 3x2 + 3x + 1 is divided by

(i) x + 1

(ii) x − 1/2

(iii) x

(iv) x + π

(v) 5 + 2x

1 Answer
0

(i) x + 1

x + 1 = 0

⇒ x = −1

∴ Remainder:

p(−1) = (−1)3+3(−1)2 + 3(−1)+1

= −1 + 3 − 3 + 1

= 0

(ii) x−1/2

x-1/2 = 0

⇒ x = 1/2

∴ Remainder:

p(1/2) = (1/2)3 + 3(1/2)2 + 3(1/2) + 1

= (1/8) + (3/4)+(3/2)+1

= 27/8

(iii) x

x = 0

∴Remainder:

p(0) = (0)3 + 3(0)2 + 3(0)+1

= 1

(iv) x+π

x + π = 0

⇒ x = −π

∴ Remainder:

p(0) = (−π)+ 3(−π)2 + 3(−π) + 1

= −π3+3π2−3π+1

(v) 5+2x

5 + 2x = 0

⇒ 2x = −5

⇒ x = -5/2

∴ Remainder:

(-5/2)3+ 3(-5/2)2 + 3(-5/2) + 1

= (-125/8) + (75/4) - (15/2) + 1

= -27/8

Share:

How Can We Help?