Forum

The figure show a r...
 
Notifications
Clear all

[Solved] The figure show a rod AB, which is bent in a 120º circular arc of radius R. A charge (-Q) is uniformly distributed over rod AB.

1 Posts
2 Users
2 Likes
587 Views
1
Topic starter

The figure show a rod AB, which is bent in a 120° circular arc of radius R. A charge (-Q) is uniformly distributed over rod AB. What is the electric field \(\vec{E}\) at the centre of curvature O?

(1) \(\frac{3 \sqrt 3 Q}{8 \pi \varepsilon_0 R^2} (\hat {i})\)

(2) \(\frac{3 \sqrt 3 Q}{8 \pi^2 \varepsilon_0 R^2} (\hat {i})\)

(3) \(\frac{3 \sqrt 3 Q}{16 \pi^2 \varepsilon_0 R^2} (\hat {i})\)

(4) \(\frac{3 \sqrt 3 Q}{8 \pi^2 \varepsilon_0 R^2} (-\hat{i})\)

This topic was modified 4 years ago 2 times by admin
1 Answer
1

Correct answer: (2) \(\frac{3 \sqrt 3 Q}{8 \pi^2 \varepsilon_0 R^2} (\hat {i})\)

Explanation:

ε = \(\frac{2k \lambda}{R}sin\)\(\frac{\theta}{2}(\hat{i})\)

λ = \(\Big(\frac{-Q}{R \theta}\Big)\) = \(\Big(\frac{-Q}{R. \frac{2 \pi}{3}}\Big)\)

λ = \(\frac{-3Q}{2 \pi R}\)

ε = \(\frac{2k}{R}\).\(\frac{-3Q}{2 πR}sin60°(-\hat {i})\)

ε = \(\frac{3 \sqrt 3 Q}{8 \pi^2 \varepsilon_0 R^2} ( \hat {i})\)

Share:

How Can We Help?