Prove that the perpendicular at the point of contact to the tangent to a circle passes through the center.
Prove that the perpendicular at the point of contact to the tangent to a circle passes through the center.
First, draw a circle with center O and draw a tangent AB which touches the radius of the circle at point P.
To Proof: PQ passes through point O.
Now, let us consider that PQ doesn’t pass through point O. Also, draw a CD parallel to AB through O. Here, CD is a straight line and AB is the tangent. Refer the diagram now.
From the above diagram, PQ intersects CD and AB at R and P respectively.
AS, CD ∥ AB,
Here, the line segment PQ is the line of intersection.
Now angles ORP and RPA are equal as they are alternate interior angles
So, ∠ORP = ∠RPA
∠RPA = 90° (Since, PQ is perpendicular to AB)
∠ORP = 90°
Now, ∠ROP + ∠OPA = 180° (Since they are co-interior angles)
∠ROP + 90° = 180°
∠ROP = 90°
Now, it is seen that the △ORP has two right angles which are ∠ORP and ∠ROP. Since this condition is impossible, it can be said the supposition we took is wrong.
-
Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
4 years ago
-
A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Figure).
4 years ago
-
Prove that the parallelogram circumscribing a circle is a rhombus.
4 years ago
-
Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the center.
4 years ago
-
In Figure XY and X′Y′ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X′Y′ at B. Prove that ∠ AOB = 90°.
4 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 0 Online
- 12.4 K Members