From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is (A) 7 cm (B) 12 cm (C) 15 cm (D) 24.5 cm
Circle
1
Posts
2
Users
0
Likes
218
Views
0
19/06/2021 11:18 am
Topic starter
From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is
(A) 7 cm
(B) 12 cm
(C) 15 cm
(D) 24.5 cm
Answer
Add a comment
Add a comment
1 Answer
0
19/06/2021 11:23 am
Correct option:(A) 7 cm
Explanation:
OP is perpendicular to PQ i.e. OP ⊥ PQ
From the above figure, it is also seen that △OPQ is a right angled triangle.
It is given that
OQ = 25 cm and PQ = 24 cm
By using Pythagoras theorem in △OPQ,
OQ2 = OP2 + PQ2
(25)2 = OP2 + (24)2
OP2 = 625 - 576
OP2 = 49
OP = 7 cm
So, 7 cm is the radius of the given circle.
Add a comment
Add a comment
Forum Jump:
Related Topics
-
Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
4 years ago
-
A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Figure).
4 years ago
-
Prove that the parallelogram circumscribing a circle is a rhombus.
4 years ago
-
Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the center.
4 years ago
-
In Figure XY and X′Y′ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X′Y′ at B. Prove that ∠ AOB = 90°.
4 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 38 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed