Forum

Which of the follow...
 
Notifications
Clear all

Which of the following are APs? If they form an A.P. find the common difference d and write three more terms. (i) 0, - 4, - 8, - 12 … (ii) -1/2, -1/2, -1/2, -1/2 …. (iii) 1, 3, 9, 27 …

1 Posts
2 Users
0 Likes
254 Views
0
Topic starter

Which of the following are APs? If they form an A.P. find the common difference d and write three more terms.

(i) 0, - 4, - 8, - 12 …

(ii) -1/2, -1/2, -1/2, -1/2 ….

(iii) 1, 3, 9, 27 …

1 Answer
0

(i) Given, 3, 3+√2, 3+2√2, 3+3√2

a2 – a1 = 3+√2-3 = √2

a3 – a2 = (3+2√2)-(3+√2) = √2

a4 – a3 = (3+3√2) – (3+2√2) = √2

Since, an+1 – an or the common difference is same every time.

Therefore, d = √2 and the given series forms a A.P.

Hence, next three terms are;

a5 = (3+√2) +√2 = 3+4√2

a6 = (3+4√2)+√2 = 3+5√2

a7 = (3+5√2)+√2 = 3+6√2

(ii) 0.2, 0.22, 0.222, 0.2222 ….

a2 – a1 = 0.22-0.2 = 0.02

a3 – a2 = 0.222-0.22 = 0.002

a4 – a3 = 0.2222-0.222 = 0.0002

Since, an+1 – an or the common difference is not same every time.

Therefore, and the given series doesn’t forms a A.P.

(iii) 0, -4, -8, -12 …

a2 – a1 = (-4)-0 = -4

a3 – a2 = (-8)-(-4) = -4

a4 – a3 = (-12)-(-8) = -4

Since, an+1 – an or the common difference is same every time.

Therefore, d = -4 and the given series forms a A.P.

Hence, next three terms are

a5 = -12-4 = -16

a6 = -16-4 = -20

a7 = -20-4 = -24

Share:

How Can We Help?