Forum

In the following AP...
 
Notifications
Clear all

In the following APs find the missing term in the boxes.

1 Posts
2 Users
0 Likes
359 Views
0
Topic starter

In the following APs find the missing term in the boxes.

(i) 2, ...., 26

(ii) ....., 13, ....., 3

(iii) 5, ....., ....., \(9\frac{1}{2}\)

(iv) -4, ....., ....., ....., ......, 6

(v) ....., 38, ....., ....., ......, -22

1 Answer
0

(i) For the given A.P., 2,2 , 26

The first and third term are;

a = 2

a3 = 26

As we know, for an A.P.,

an = a+(n −1)d

Therefore, putting the values here,

a3 = 2+(3-1)d

26 = 2+2d

24 = 2d

d = 12

a2 = 2+(2-1)12

= 14

Therefore, 14 is the missing term.

(ii) For the given A.P., , 13, ,3

a2 = 13 and

a4 = 3

As we know, for an A.P.,

an = a+(n−1) d

Therefore, putting the values here,

a2 = a +(2-1)d

13 = a+d ………………. (i)

a4 = a+(4-1)d

3 = a+3d ………….. (ii)

On subtracting equation (i) from (ii), we get,

– 10 = 2d

d = – 5

From equation (i), putting the value of d,we get

13 = a+(-5)

a = 18

a3 = 18+(3-1)(-5)

= 18+2(-5) = 18-10 = 8

Therefore, the missing terms are 18 and 8 respectively.

(iii) For the given A.P.,

a = 5 and

a4 = 19/2

As we know, for an A.P.,

an = a+(n−1)d

Therefore, putting the values here,

a4 = a+(4-1)d

19/2 = 5+3d

(19/2) – 5 = 3d

3d = 9/2

d = 3/2

a2 = a+(2-1)d

a2 = 5+3/2

a2 = 13/2

a3 = a+(3-1)d

a3 = 5+2×3/2

a3 = 8

Therefore, the missing terms are 13/2 and 8 respectively.

(iv) For the given A.P.,

a = −4 and

a6 = 6

As we know, for an A.P.,

an = a +(n−1) d

Therefore, putting the values here,

a6 = a+(6−1)d

6 = − 4+5d

10 = 5d

d = 2

a2 = a+d = − 4+2 = −2

a3 = a+2d = − 4+2(2) = 0

a4 = a+3d = − 4+ 3(2) = 2

a5 = a+4d = − 4+4(2) = 4

Therefore, the missing terms are −2, 0, 2, and 4 respectively.

(v) For the given A.P.,

a2 = 38

a6 = −22

As we know, for an A.P.,

an = a+(n −1)d

Therefore, putting the values here,

a2 = a+(2−1)d

38 = a+d ……………………. (i)

a6 = a+(6−1)d

−22 = a+5d …………………. (ii)

On subtracting equation (i) from (ii), we get

− 22 − 38 = 4d

−60 = 4d

d = −15

a = a2 − d = 38 − (−15) = 53

a3 = a + 2d = 53 + 2 (−15) = 23

a4 = a + 3d = 53 + 3 (−15) = 8

a5 = a + 4d = 53 + 4 (−15) = −7

Therefore, the missing terms are 53, 23, 8, and −7 respectively.

Share:

How Can We Help?