Forum

In an AP (i) Given ...
 
Notifications
Clear all

In an AP (i) Given a12 = 37, d = 3, find a and S12. (ii) Given a3 = 15, S10 = 125, find d and a10. (iii) Given d = 5, S9 = 75, find a and a9.

1 Posts
2 Users
0 Likes
251 Views
0
Topic starter

In an AP

(i) Given a12 = 37, d = 3, find a and S12.

(ii) Given a3 = 15, S10 = 125, find d and a10.

(iii) Given d = 5, S9 = 75, find a and a9.

1 Answer
0

(i) Given that, a12 = 37, d = 3

the nth term in an AP,

an = a+(n −1)d,

⇒ a12 = a+(12−1)3

⇒ 37 = a+33

⇒ a = 4

Now, sum of nth term,

Sn = n/2 (a+an)

Sn = 12/2 (4+37)

= 246

(ii) Given that, a3 = 15, S10 = 125

an = a +(n−1)d,

a3 = a+(3−1)d

15 = a+2d  …………….. (i)

Sum of the nth term,

Sn = n/2 [2a+(n-1)d]

S10 = 10/2 [2a+(10-1)d]

125 = 5(2a+9d)

25 = 2a+9d  …………….. (ii)

On multiplying equation (i) by (ii), we will get;

30 = 2a+4d  ………………. (iii)

By subtracting equation (iii) from (ii), we get,

−5 = 5d

d = −1

From equation (i),

15 = a+2(−1)

15 = a−2

a = 17 = First term

a10 = a+(10−1)d

a10 = 17+(9)(−1)

a10 = 17−9 = 8

(iii) Given that, d = 5, S9 = 75

Sn = n/2 [2a +(n -1)d]

S9 = 9/2 [2a +(9-1)5]

25 = 3(a+20)

25 = 3a+60

3a = 25−60

a = -35/3

As we know, the nth term can be written as;

an = a+(n−1)d

a9 = a+(9−1)(5)

= -35/3+8(5)

= -35/3+40

= (35+120/3) = 85/3

Share:

How Can We Help?