Forum

In an AP (i) Given ...
 
Notifications
Clear all

In an AP (i) Given a = 2, d = 8, Sn = 90, find n and an. (ii) Given a = 8, an = 62, Sn = 210, find n and d.

1 Posts
2 Users
0 Likes
419 Views
0
Topic starter

In an AP

(i) Given a = 2, d = 8, Sn = 90, find n and an.

(ii) Given a = 8, an = 62, Sn = 210, find n and d.

(iii) Given an = 4, d = 2, Sn = -14, find n and a.

1 Answer
0

(i) Given that, a = 2, d = 8, Sn = 90

Sn = n/2 [2a +(n -1)d]

90 = n/2 [2a +(n -1)d]

⇒ 180 = n(4+8n -8)

= n(8n-4) = 8n2-4n

⇒ 8n2-4n –180 = 0

⇒ 2n2–n-45 = 0

⇒ 2n2-10n+9n-45 = 0

⇒ 2n(n -5)+9(n -5) = 0

⇒ (n-5)(2n+9) = 0

So, n = 5 (as n only be a positive integer)

∴ a5 = 8+5×4 = 34

(ii) Given that, a = 8, an = 62, Sn = 210

Sn = n/2 (a + an)

210 = n/2 (8 +62)

⇒ 35n = 210

⇒ n = 210/35 = 6

Now, 62 = 8+5d

⇒ 5d = 62-8 = 54

⇒ d = 54/5 = 10.8

(iii) Given that, nth term, an = 4, common difference, d = 2, sum of n terms, Sn = −14.

an = a+(n −1)d,

4 = a+(n −1)2

4 = a+2n−2

a+2n = 6

a = 6 − 2n ………………. (i)

As we know, the sum of n terms is;

Sn = n/2 (a+an)

-14 = n/2 (a+4)

−28 = n (a+4)

−28 = n (6 −2n +4) {From equation (i)}

−28 = n (− 2n +10)

−28 = − 2n2+10n

2n2 −10n − 28 = 0

n2 −5n −14 = 0

n2 −7n+2n −14 = 0

n (n−7)+2(n −7) = 0

(n −7)(n +2) = 0

Either n − 7 = 0 or n + 2 = 0

n = 7 or n = −2

However, n can neither be negative nor fractional.

Therefore, n = 7

From equation (i), we get

a = 6−2n

a = 6−2(7)

= 6- 14

= -8

Share:

How Can We Help?