Forum

If they form an A.P...
 
Notifications
Clear all

If they form an A.P. find the common difference d and write three more terms. (i) a, 2a, 3a, 4a … (ii) a, a2, a3, a4 … (iii) √2, √8, √18, √32 …

1 Posts
2 Users
0 Likes
376 Views
0
Topic starter

Which of the following are APs? If they form an A.P. find the common difference d and write three more terms.

(i) a, 2a, 3a, 4a …

(ii) a, a2, a3, a4 …

(iii) √2, √8, √18, √32 …

1 Answer
0

(i) a, 2a, 3a, 4a …

a2 – a1 = 2aa

a3 – a2 = 3a-2a = a

a4 – a3 = 4a-3a = a

Since, an+1 – an or the common difference is same every time.

Therefore, d = a and the given series forms a A.P.

Hence, next three terms are;

a5 = 4a+a = 5a

a6 = 5a+a = 6a

a7 = 6a+a = 7a

(ii) aa2a3a4 …

a2 – a1 = a2a = a(a-1)

a3 – a2 = a aa2(a-1)

a4 – a3 = a4 – aa3(a-1)

Since, an+1 – an or the common difference is not same every time.

Therefore, the given series doesn’t forms a A.P.

(iii) √2, √8, √18, √32 …

a2 – a1 = √8-√2  

= 2√2-√2 = √2

 a3 – a2 = √18-√8 

= 3√2-2√2 = √2

a4 – a3 = 4√2-3√2 

= √2

Since, an+1 – an or the common difference is same every time.

Therefore, d = √2 and the given series forms a A.P.

Hence, next three terms are;

a5 = √32+√2 = 4√2+√2 

= 5√2 = √50

a6 = 5√2+√2 

= 6√2 = √72

a7 = 6√2+√2 

= 7√2 = √98

Share:

How Can We Help?