Forum

If they form an A.P...
 
Notifications
Clear all

If they form an A.P. find the common difference d and write three more terms. (i) √3, √6, √9, √12 … (ii) 1^2, 3^2, 5^2, 7^2 … (iii) 1^2, 5^2, 7^2, 7^3 …

1 Posts
2 Users
0 Likes
335 Views
0
Topic starter

Which of the following are APs? If they form an A.P. find the common difference d and write three more terms.

(i) √3, √6, √9, √12 …

(ii) 12, 32, 52, 72 …

(iii) 12, 52, 72, 73 …

1 Answer
0

(i) √3, √6, √9, √12 …

a2 – a1 = √6-√3 

= √3×√2-√3 = √3(√2-1)

a3 – a2 = √9-√6 = 3-√6 

= √3(√3-√2)

a4 – a3 = √12 – √9 = 2√3 – √3×√3

= √3(2-√3)

Since, an+1 – an or the common difference is not same every time.

Therefore, the given series doesn’t form a A.P.

(ii) 12, 32, 52, 72 …

Or, 1, 9, 25, 49 …..

a2 − a1 = 9−1 = 8

a3 − a= 25−9 = 16

a4 − a3 = 49−25 = 24

Since, an+1 – an or the common difference is not same every time.

Therefore, the given series doesn’t form a A.P.

(iii) 12, 52, 72, 73 …

Or 1, 25, 49, 73 …

a2 − a1 = 25−1 = 24

a3 − a= 49−25 = 24

a4 − a3 = 73−49 = 24

Since, an+1 – an or the common difference is same every time.

Therefore, d = 24 and the given series forms a A.P.

Hence, next three terms are;

a5 = 73+24 = 97

a6 = 97+24 = 121

a= 121+24 = 145

Share:

How Can We Help?