Forum

Find the sums given...
 
Notifications
Clear all

Find the sums given below: (i) 7 + 10 1/2 + 14 + ...... + 84 (ii) 34 + 32 + 30 + ……….. + 10 (iii) -5 + (-8) + (-11) + ………… + (-230)

1 Posts
2 Users
0 Likes
307 Views
0
Topic starter

Find the sums given below:

(i) 7 + \(10 \frac{1}{2}\) + 14 + ...... + 84

(ii) 34 + 32 + 30 + ……….. + 10

(iii) -5 + (-8) + (-11) + ………… + (-230)

1 Answer
0

(i) For this given A.P., 7 + \(10 \frac{1}{2}\) + 14 + ...... + 84

First term, a = 7

nth term, a= 84

Common difference, d = a2 - a1

= \(10 \frac{1}{2} - 7\) = \( \frac{21}{2} - 7\) = \(\frac{7}{2}\)

Let 84 be the nth term of this A.P., then as per the nth term formula,

a= a(n-1)d

84 = 7+(n – 1)×7/2

77 = (n-1)×7/2

22 = n−1

n = 23

We know that, sum of n term is;

Sn = n/2 (a + l) , l = 84

Sn = 23/2 (7+84)

Sn = (23×91/2) = 2093/2

Sn = \(1046 \frac{1}{2}\)

(ii) Given, 34 + 32 + 30 + ……….. + 10

first term, a = 34

common difference, d = a2−a1 

= 32 - 34 = -2

nth term, an= 10

Let 10 be the nth term of this A.P.,

an= a +(n−1)d

10 = 34+(n-1)(-2)

-24 = (n -1)(-2)

12 = n -1

n = 13

We know that, sum of n terms is;

Sn = n/2 (a +l) , l = 10

= 13/2 (34 + 10)

= (13×44/2) = 13 × 22

= 286

(iii) Given, (−5) + (−8) + (−11) + ………… + (−230)

For this A.P.,

First term, a = −5

nth term, an= −230

Common difference, d = a2−a1 

= (−8)−(−5)

d = − 8+5 = −3

Let −230 be the nth term of this A.P., and by the nth term formula we know,

an= a+(n−1)d

−230 = − 5+(n−1)(−3)

−225 = (n−1)(−3)

(n−1) = 75

n = 76

And, Sum of n term,

Sn = n/2 (a + l)

= 76/2 [(-5) + (-230)]

= 38(-235)

= -8930

Share:

How Can We Help?