Figure depicts a racing track whose left and right ends are semicircular. The distance between the two inner parallel line segments is 60 m and they are each 106 m long. If the track is 10 m wide, find:
Figure depicts a racing track whose left and right ends are semicircular.
The distance between the two inner parallel line segments is 60 m and they are each 106 m long. If the track is 10 m wide, find:
(i) the distance around the track along its inner edge
(ii) the area of the track.
Width of the track = 10 m
Distance between two parallel lines = 60 m
Length of parallel tracks = 106 m
DE = CF = 60 m
Radius of inner semicircle, r = OD = O’C
= 60/2 m = 30 m
Radius of outer semicircle, R = OA = O’B
= 30 + 10 m = 40 m
Also, AB = CD = EF = GH = 106 m
Distance around the track along its inner edge = CD + EF + 2 × (Circumference of inner semicircle)
= 106 + 106 + (2 × πr) m = 212 + (2 × 22/7 × 30) m
= 212 + 1320/7 m = 2804/7 m
Area of the track = Area of ABCD + Area EFGH + 2 × (area of outer semicircle) – 2 × (area of inner semicircle)
= (AB×CD)+(EF×GH)+2×(πr2/2) -2×(πR2/2) m2
= (106×10)+(106×10)+2×π/2(r2-R2) m2
= 2120+22/7×70×10 m2
= 4320 m2
-
Calculate the area of the designed region in Figure common between the two quadrants of circles of radius 8 cm each.
3 years ago
-
In Figure, ABC is a quadrant of a circle of radius 14 cm and a semicircle is drawn with BC as diameter. Find the area of the shaded region.
3 years ago
-
AB and CD are respectively arcs of two concentric circles of radii 21 cm and 7 cm and centre O (see Figure). If ∠AOB = 30°, find the area of the shaded region.
3 years ago
-
In Figure, a square OABC is inscribed in a quadrant OPBQ. If OA = 20 cm, find the area of the shaded region. (Use π = 3.14)
3 years ago
-
In Figure, OACB is a quadrant of a circle with centre O and radius 3.5 cm. If OD = 2 cm, find the area of the (i) quadrant OACB (ii) shaded region.
3 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 2 Online
- 12.4 K Members