The value of the integral ∫_0^1 √x dx/(1+x)(1+3x)(3+x)
The value of the integral \(\int_0^1 \frac{\sqrt x dx}{(1+x)(1+3x)(3+x)}\) is
(1) \(\frac{\pi}{8}\)\(\Big(1 - \frac{\sqrt 3}{2}\Big)\)
(2) \(\frac{\pi}{4}\)\(\Big(1 - \frac{\sqrt 3}{6}\Big)\)
(3) \(\frac{\pi}{8}\)\(\Big(1 - \frac{\sqrt 3}{6}\Big)\)
(4) \(\frac{\pi}{4}\)\(\Big(1 - \frac{\sqrt 3}{2}\Big)\)
Correct answer: (1) \(\frac{\pi}{8}\)\(\Big(1 - \frac{\sqrt 3}{2}\Big)\)
Explanation:
I = \(\int_0^1 \frac{\sqrt x}{(1+x)(1+3x)(3+x)}\)dx
Let x = t2 ⇒ dx = 2t.dt
I = \(\int_0^1 \frac{t(2t)}{(t^2 + 1)(1+3t^2)(3+t^2)}\)dt
I = \(\int_0^1 \frac{(3t^2 + 1)-(t^2+1)}{(3t^2 + 1)(t^2 + 1)(3+t^2)}\)dt
I = \(\int_0^1 \frac{dt}{(t^2 + 1)(3+t^2)}\)- \(\int_0^1 \frac{dt}{(1+3t^2)(3+t^2)}\)
= \(\frac{1}{2}\)\(\int_0^1 \frac{(3+t^2)-(t^2+1)}{(t^2 + 1)(3+t^2)}\)dt + \(\frac{1}{8}\)\(\int_0^1 \frac{(1+3t^2)-3(3 + t^2)}{(1+ 3t^2)(3+t^2)}\)dt
= \(\frac{1}{2}\)\(\int_0^1 \frac{dt}{t^2 + 1}\)- \(\frac{1}{2}\)\(\int_0^1 \frac{dt}{t^2 + 3}\)+ \(\frac{1}{8}\)\(\int_0^1 \frac{dt}{t^2 + 3}\) - \(\frac{3}{8}\)\(\int_0^1 \frac{dt}{1+3t^2}\)
= \(\frac{1}{2}\)\(\int_0^1 \frac{dt}{t^2 + 1}\)- \(\frac{3}{8}\)\(\int_0^1 \frac{dt}{t^2 + 3}\) - \(\frac{3}{8}\)\(\int_0^1 \frac{dt}{1+3t^2}\)
= \(\frac{1}{2}(tan^{-1}(t))_0^1 - \frac{3}{8 \sqrt 3}\)\(\Big(tan^{-1}\Big(\frac{t}{\sqrt 3}\Big) \Big)_0^1\) - \(\frac{3}{8 \sqrt 3}\)\((tan^{-1}(\sqrt 3 t))_0^1\)
= \(\frac{1}{2}(\frac{\pi}{4})\)-\(\frac{\sqrt 3}{8}(\frac{\pi}{6})\) - \(\frac{\sqrt{3}}{8}(\frac{\pi}{3})\)
= \(\frac{\pi}{8}\) - \(\frac{\sqrt 3}{16} \pi\)
= \(\frac{\pi}{8}\)\(\Big(1 - \frac{\sqrt 3}{2}\Big)\)
-
An electric instrument consists of two units. Each unit must function independently for the instrument to operate.
3 years ago
-
If (3^6/4^4)k is the term, independent of x, in the binomial expansion of
3 years ago
-
If x φ(x) = ∫_5^x (3t^2 - 2φ'(t))dt, x > -2, and φ(0) = 4, then φ(2) is ................
3 years ago
-
The number of six letter words (with or without meaning), formed using all the letters of the word 'VOWELS', so that all the consonants never come together, is
3 years ago
-
If the variable line 3x + 4y = a lies between the two circles (x – 1)^2 + (y – 1)^2 = 1 and (x – 9)^2 + (y – 1)^2 = 4, without intercepting a chord on either circle, then the sum of all the integral values of a is _________.
3 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 26 Online
- 12.4 K Members