Forum

The value of ∫ln x^...
 
Notifications
Clear all

[Solved] The value of ∫ln x^2/(ln x^2 + ln(x^2 -44x + 484), x ∈ 6,16 dx is

1 Posts
2 Users
2 Likes
357 Views
1
Topic starter

The value of \(\int_6^{16}\frac{ln \ x^2}{ ln \ x^2 + ln(x^2-44x + 484)}dx\) is

(a) 5

(b) 8

(c) 6

(d) 10

1 Answer
1

Correct answer: (a) 5

Explanation:

I = \(\int_6^{16}\frac{ln \ x^2}{ ln \ x^2 + ln(x - 22)^2}dx\)

= \(\int_6^{16}\frac{ln (22 -x)^2}{ ln (22 - x)^2 + ln x^2}dx\)

= \(\int_6^{16}\frac{ln (x -22)^2}{ ln x^2 + ln(22 - x)^2} dx\) (∴ \(\int_a^b f(x)  \) = \(\int_a^b f(a + b - x)\))

= \(\int_6^{16}\frac{ln (x - 22)^2}{ ln x^2+ ln (x - 22)^2}dx\)

Thus I = \(\int_6^{16}\frac{ln \ x^2}{ ln \ x^2 + ln(x^2-44x + 484)}dx\)

= \(\int_6^{16}\frac{ln (22 -x)^2}{ ln (22 - x)^2 + ln x^2}dx\)

⇒ 2I = \(\int_6^{16}\frac{ln\ x^2 + ln (x -22)^2}{ ln x^2 + ln (x - 22)^2}dx\)

⇒ 2I = 16 - 6

⇒ I = 5

Share:

How Can We Help?