[Solved] The value of ∫ln x^2/(ln x^2 + ln(x^2 -44x + 484), x ∈ 6,16 dx is
1
04/01/2022 1:29 pm
Topic starter
The value of \(\int_6^{16}\frac{ln \ x^2}{ ln \ x^2 + ln(x^2-44x + 484)}dx\) is
(a) 5
(b) 8
(c) 6
(d) 10
Answer
Add a comment
Add a comment
Topic Tags
1 Answer
1
04/01/2022 1:44 pm
Correct answer: (a) 5
Explanation:
I = \(\int_6^{16}\frac{ln \ x^2}{ ln \ x^2 + ln(x - 22)^2}dx\)
= \(\int_6^{16}\frac{ln (22 -x)^2}{ ln (22 - x)^2 + ln x^2}dx\)
= \(\int_6^{16}\frac{ln (x -22)^2}{ ln x^2 + ln(22 - x)^2} dx\) (∴ \(\int_a^b f(x) \) = \(\int_a^b f(a + b - x)\))
= \(\int_6^{16}\frac{ln (x - 22)^2}{ ln x^2+ ln (x - 22)^2}dx\)
Thus I = \(\int_6^{16}\frac{ln \ x^2}{ ln \ x^2 + ln(x^2-44x + 484)}dx\)
= \(\int_6^{16}\frac{ln (22 -x)^2}{ ln (22 - x)^2 + ln x^2}dx\)
⇒ 2I = \(\int_6^{16}\frac{ln\ x^2 + ln (x -22)^2}{ ln x^2 + ln (x - 22)^2}dx\)
⇒ 2I = 16 - 6
⇒ I = 5
Add a comment
Add a comment
Forum Jump:
Related Topics
-
An electric instrument consists of two units. Each unit must function independently for the instrument to operate.
3 years ago
-
If (3^6/4^4)k is the term, independent of x, in the binomial expansion of
3 years ago
-
If x φ(x) = ∫_5^x (3t^2 - 2φ'(t))dt, x > -2, and φ(0) = 4, then φ(2) is ................
3 years ago
-
The number of six letter words (with or without meaning), formed using all the letters of the word 'VOWELS', so that all the consonants never come together, is
3 years ago
-
If the variable line 3x + 4y = a lies between the two circles (x – 1)^2 + (y – 1)^2 = 1 and (x – 9)^2 + (y – 1)^2 = 4, without intercepting a chord on either circle, then the sum of all the integral values of a is _________.
3 years ago
Forum Information
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 17 Online
- 12.4 K Members
Our newest member: Stripchat
Forum Icons:
Forum contains no unread posts
Forum contains unread posts
Topic Icons:
Not Replied
Replied
Active
Hot
Sticky
Unapproved
Solved
Private
Closed