Forum

The sum of 10 terms...
 
Notifications
Clear all

The sum of 10 terms of the series

1 Posts
2 Users
0 Likes
182 Views
0
Topic starter

The sum of 10 terms of the series

\(\frac{3}{1^2 \times 2^2}\) + \(\frac{5}{2^2 \times 3^2}\) + \(\frac{7}{3^2 \times 4^2}\)+....is

(1) 1

(2) \(\frac{120}{121}\)

(3) \(\frac{99}{100}\)

(4) \(\frac{143}{144}\)

1 Answer
0

Correct answer: (2) \(\frac{120}{121}\)

Explanation:

S = \(\frac{2^2 - 1^2}{1^2 \times 2^2}\) + \(\frac{3^2 - 2^2}{2^2 \times 3^2}\) + \(\frac{4^2 - 3^2}{3^2 \times 4^2}\) + ....

= \(\Big[\frac{1}{1^2} - \frac{1}{2^2}\Big]\) + \(\Big[\frac{1}{2^2} - \frac{1}{3^2}\Big]\) + \(\Big[\frac{1}{3^2} - \frac{1}{4^2}\Big]\) + ....+ \(\Big[\frac{1}{10^2} - \frac{1}{11^2}\Big]\)

= 1 - \(\frac{1}{121}\)

= \(\frac{120}{121}\)

Share:

How Can We Help?