Forum

The probability dis...
 
Notifications
Clear all

The probability distribution of random variable X is given by: X → 1 - 2 - 3 - 4 - 5 P(X) → K - 2K - 2K - 3K - K Let p = P(1 < X < 4 | X < 3). If 5p = λK, then λ equal to

1 Posts
2 Users
0 Likes
316 Views
0
Topic starter

The probability distribution of random variable X is given by:

X →      1 - 2 - 3 - 4 - 5

P(X) → K - 2K - 2K - 3K - K

Let p = P(1 < X < 4 | X < 3). If 5p = λK, then λ equal to ________.

1 Answer
0

ΣP(X) = 1 ⇒ k + 2k + 2k + 3k + k = 1

⇒ k = \(\frac{1}{9}\)

Now, p = P\(\Big(\frac{kX < 4}{X < 3}\Big)\)

= \(\frac{P(X = 2)}{P(X<3)}\) = \(\frac{\frac{2k}{9k}}{\frac{k}{9k} + \frac{2k}{9k}}\) = \(\frac{2}{3}\)

⇒ p = \(\frac{2}{3}\)

Now, 5p = λK

⇒ (5)\((\frac{2}{3})\) = λ\((\frac{1}{9})\)

⇒ λ = 30

Share:

How Can We Help?