Forum

The integral ∫1/4√(...
 
Notifications
Clear all

[Solved] The integral ∫1/4√(x-1)^3(x+2)^5 dx is equal to :

1 Posts
2 Users
2 Likes
528 Views
1
Topic starter

The integral \(\int \frac{1}{\sqrt[4]{(x-1)^3(x + 2)^5}}\)dx is equal to : (where C is a constant of integration)

(1) \(\frac{3}{4}\)\(\Big(\frac{x+2}{x-1}\Big)^{\frac{1}{4}}\) + C

(2) \(\frac{3}{4}\)\(\Big(\frac{x+2}{x-1}\Big)^{\frac{5}{4}}\) + C

(3) \(\frac{4}{3}\)\(\Big(\frac{x-1}{x+2}\Big)^{\frac{1}{4}}\) + C

(4) \(\frac{4}{3}\)\(\Big(\frac{x-1}{x+2}\Big)^{\frac{5}{4}}\) + C

1 Answer
1

Correct answer: (3) \(\frac{4}{3}\)\(\Big(\frac{x-1}{x+2}\Big)^{\frac{1}{4}}\) + C

Explanation:

\(\int \frac{dx}{(x-1)^{\frac{3}{4}}(x + 2)^{\frac{5}{4}}}\)

= \(\int \frac{dx}{(\frac{x+2}{x-1})^{\frac{5}{4}}.(x-1)^2}\)

put \(\frac{x+2}{x-1}\) = t

= -\(\frac{1}{3}\)\(\int \frac{dt}{t^{\frac{5}{4}}}\)

= \(\frac{4}{3}\).\(\frac{1}{t^{\frac{1}{4}}}\) + C

= \(\frac{4}{3}\)\(\Big(\frac{x-1}{x+2}\Big)^{\frac{1}{4}}\) + C

Share:

How Can We Help?