Forum

The Boolean express...
 
Notifications
Clear all

The Boolean expression (p ∧ q) ⇒ ((r ∧ q) ∧ p) is equivalent to :

1 Posts
2 Users
0 Likes
533 Views
0
Topic starter

The Boolean expression (p ∧ q) ⇒ ((r ∧ q) ∧ p) is equivalent to

(1) (p ∧ q) ⇒ (r ∧ q)

(2) (q ∧ r) ⇒ (p ∧ q)

(3) (p ∧ q) ⇒ (r ∨ q)

(4) (p ∧ r) ⇒ (p ∧ q)

1 Answer
0

Correct answer: (1) (p ∧ q) ⇒ (r ∧ q)

Explanation:

(p ∧ q) ⇒ ((r ∧ q) ∧ p) ∼ (p ∧ q) ∨ ((r ∧ q) ∧ p) ∼ (p ∧ q) ∨ (r ∧ q) ∧ (p ∧ q)

⇒ [∼ (p ∧ q) ∨ (p ∧ q)] ∧ (∼(p ∧ q) ∨ (r ∧ p))

⇒ t ∧ [∼ (p ∧ q) ∨ (r ∧ p)

⇒ ∼ (p ∧ q) ∨ (r ∧ q)

⇒ (p ∧ q) ⇒ (r ∧ q)

Alternate: 

given statement says

"if p and q both happen then

p and q and r will happen"

it Simply implies

"If p and q both happen then 'r' too will happen "

i.e. "if p and q both happen then r and p too will happen

i.e. (p ∧ q) ⇒ (r ∧ q)

Share:

How Can We Help?