[Solved] Solve ∫1/(x^2 + x+1)^2 dx
Solve \(\int \frac{1}{(x^2+x+1)^2}dx\)
(a) \(\frac{4}{\sqrt{3}} tan^{-1}(\frac{2x-1}{\sqrt{3}}) + \frac{\sqrt{3}}{4}(\frac{2x-1}{x^2+x+1})+c\)
(b) \(\frac{4}{3\sqrt{3}} tan^{-1}(\frac{2x-1}{\sqrt{3}}) - \frac{\sqrt{3}}{4}(\frac{2x-1}{x^2+x+1})+c\)
(c) \(\frac{4}{3\sqrt{3}} tan^{-1}(\frac{2x+1}{\sqrt{3}}) + \frac{1}{3}(\frac{2x+1}{x^2+x+1})+c\)
(d) \(\frac{4}{3\sqrt{3}} tan^{-1}(\frac{2x+1}{\sqrt{3}}) - \frac{1}{3}(\frac{2x+1}{x^2+x+1})+c\)
Correct answer: (c) \(\frac{4}{3\sqrt{3}} tan^{-1}(\frac{2x+1}{\sqrt{3}}) + \frac{1}{3}(\frac{2x+1}{x^2+x+1})+c\)
Explanation:
I = \(\int \frac{1}{(x^2+x+1)^2}dx\) = \(\int \frac{1}{[(x + \frac{1}{2})^2 + \frac{2}{4}]^2}dx\)
Let x + \(\frac{1}{2}\) = a ⇒ da = dx
= \(\int \frac{1}{(a^2 + \frac{3}{4})^2}da\)
Let a = \(\frac{\sqrt 3}{2}\)tan θ ⇒ da = \(\frac{\sqrt 3}{2}sec^2 \theta \ d \theta\)
\((a^2 + \frac{3}{4})^2\) = \((\frac{3}{4}tan^2 \theta + \frac{3}{4})^2\)
⇒ \((a^2 + \frac{3}{4})^2\) = \(\frac{9 \ sec^4 \theta}{16}\)
= \(\frac{\sqrt 3}{2}\)\(\int \frac{16 \ d \theta}{9sec^2 \theta}\) = \(\frac{8}{3 \sqrt 3}\)\(\int cos^2 \theta d \theta\)
= \(\frac{8}{3 \sqrt 3}\) \(\int (\frac{1}{2}cos2 \theta + \frac{1}{2})d \theta\) = \(\frac{4}{3 \sqrt 3}(\frac{sin 2 \theta}{2} + \theta)\)
= \(\frac{4}{9}\)\(\Big[\frac{6a}{4a^2+3} + \sqrt 3 tan^{-1}(\frac{2a}{\sqrt 3}) \Big]\)
= \(\frac{4 \sqrt 3(x^2 + x + 1)tan^{-1} (\frac{2x+1}{\sqrt3})+6x+3}{9(x^2+x+1)}\)
= \(\frac{1}{9}\)\(\Big[\frac{6x+3}{x^2+x+1} + 4 \sqrt3 tan^{-1} (\frac{2x+1}{\sqrt3})\Big] \)
= \(\frac{4}{3\sqrt3}tan^{-1}\)\((\frac{2x+1}{\sqrt3})\) + \(\frac{1}{3}\)\(\Big(\frac{2x+1}{x^2+x+1}\Big)\)
-
An electric instrument consists of two units. Each unit must function independently for the instrument to operate.
3 years ago
-
If (3^6/4^4)k is the term, independent of x, in the binomial expansion of
3 years ago
-
If x φ(x) = ∫_5^x (3t^2 - 2φ'(t))dt, x > -2, and φ(0) = 4, then φ(2) is ................
3 years ago
-
The number of six letter words (with or without meaning), formed using all the letters of the word 'VOWELS', so that all the consonants never come together, is
3 years ago
-
If the variable line 3x + 4y = a lies between the two circles (x – 1)^2 + (y – 1)^2 = 1 and (x – 9)^2 + (y – 1)^2 = 4, without intercepting a chord on either circle, then the sum of all the integral values of a is _________.
3 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 28 Online
- 12.4 K Members