Forum

Find: Σn=0, 20 (20^...
 
Notifications
Clear all

Find: Σn=0, 20 (20^Cn)^2

1 Posts
2 Users
0 Likes
320 Views
0
Topic starter

Find: \(\sum_{n = 0}^{20}(^{20}C_n)^2\)

1 Answer
0

\(\sum_{n=0}^{20}(^{20}C_n)^2\)

\((^{20}C_n)^2\)→ coefficient of xr in (1+x)20 expansion.

(1+x)20 = \(^{20}C_0\) + \(^{20}C_1x + {20}C_2x^2 + \).....+ \(^{20}C_{20}x^{20}\)

(1+x)20 = \(^{20}C_0x^{20}\) + \(^{20}C_1x^{19} + ^{20}C_2x^{18} + \).....+ \(^{20}C_{20}\)

Multiplying both the equations,

(1+x)40 = \(^{20}C_0\) + \(^{20}C_1x + ^{20}C_2x^2 + \).....+ \(^{20}C_20x^{20}\)x\(^{20}C_0\) + \(^{20}C_1x^{19} + ^{20}C_2x^{18} + \).....+ \(^{20}C_{20}\)

Comparing both the coefficients of x20 on both the sides,

\(^{40}C_{20}\) = \((^{20}C_0)^2\) + \((^{20}C_1)^2\) + .......+ \(^{20}C_{20}\)

\(^{40}C_{20}\) = \(\sum_{n=0}^{20}(^{20}C_n)^2\)

Share:

How Can We Help?